2016-2017

Casprini Elena

Elena Casprini è Postdoc in Economia e Gestione delle Imprese all’Istituto di Management, Scuola Superiore Sant’Anna. È stata Visiting Ph.D. student presso la Cass Business School (Londra, Regno Unito) e collabora con il Dipartimento di Studi Sociali e Giuridici dell’Università di Siena. È coinvolta in attività didattiche riguardanti la gestione dell’innovazione per corsi di laurea triennali, magistrali e masters. I suoi interessi di ricerca principali riguardano l’innovazione dei modelli di business, l’open innovation e le aziende familiari. 

Italiano

Data Science for Quantitive Finance

Credits: 
2
Hours: 
20
Area: 
Big Data Mining
Teachers: 
Academic Year: 
Description: 

Il corso introduce gli elementi principali per la comprensione dei mercati finanziari, la loro struttura e l'infrastruttura tecnologica. In particolare, il modulo fornisce un background sulla modellazione empirica di time series finanziari, individuando gli aspetti fondamentali della data science tra cui la memorizzazione dei dati, la latenza, l'high dimensional inference, ecc. Il modulo copre anche l'analisi semantica dei testi da news feed e social network per la previsione finanziaria.

Sentiment Analysis & Opinion Mining

Credits: 
2
Hours: 
20
Area: 
Big Data Mining
Teachers: 
Academic Year: 
Description: 

Il modulo presenta le principali tecniche di analisi e mining delle opinioni e delle preferenze degli utenti sulla base di Big Data provenienti dal web o da altre sorgenti. Particolare enfasi viene posta sull'uso delle tecniche di text mining per la comprensione del significato emotivo dei testi prodotti dagli utenti sui social media. L'apprendimento sarà sostenuto da numerosi casi di studio sviluppati nel laboratorio SoBigData.eu.

Social Network Analysis

Credits: 
2
Hours: 
20
Area: 
Big Data Mining
Description: 

Il modulo ha lo scopo di fornire agli studenti gli strumenti e le conoscenze necessarie ad analizzare dati su larga scala provenienti da Online Social Networks. Nel modulo vengono presentati gli strumenti di analisi necessari, vengono poi illustrati i risultati ottenuti applicando tali strumenti a vari tipi di reti sociali. Tali strumenti vengono applicati ai due modi principali di rappresentare una OSN tramite grafi, considerando cioè il social e l’interaction graph.

Tirocinio

Credits: 
20
Hours: 
500
Description: 

Il periodo di tirocinio previsto dal Master è di 500 ore, corrispondenti a 20 CFU, da svolgersi individualmente o in piccoli gruppi presso una delle aziende ed istituzioni partner del master, sulla base di un progetto concordato e sotto la supervisione di un team di tutor composto da docenti del master e responsabili aziendali.

Web Mining & Nowcasting

Credits: 
2
Hours: 
20
Area: 
Big Data Mining
Description: 

Il modulo presenta le principali tecniche di analisi delle tracce che gli utenti lasciano come effetto delle interrogazioni ai motori di ricerca sul web (query log). Vengono discusse le principali applicazioni del web mining fra cui la profilazione degli interessi o delle attività degli utenti e l'uso dei query log per varie forme di nowcasting, ovvero previsione a breve di indicatori sociali, economici e culturali. L'apprendimento sarà sostenuto da numerosi casi di studio sviluppati nel laboratorio SoBigData.eu.

Information Retrieval

Credits: 
5
Hours: 
40
Area: 
Big Data Sensing & Procurement
Teachers: 
Academic Year: 
Description: 

Il modulo prevede l'insegnamento dei moduli software che costituiscono un moderno motore di ricerca, e di analisi delle prestazioni e dei limiti computazionali delle soluzioni algoritmiche correntemente adottate per ciascuno di essi. Fondamenti pratici e teorici per l’organizzazione e l’analisi dei sistemi di IR.

Mobility Data Analysis

Credits: 
2
Hours: 
20
Area: 
Big Data Mining
Teachers: 
Academic Year: 
Description: 

Il modulo si propone di mostrare le principali tecniche di analisi dei dati spazio-temporali relativi al movimento di persone e veicoli al fine di comprendere la mobilità in un territorio. L'apprendimento sarà sostenuto da numerosi casi di studio sviluppati nel laboratorio SoBigData.eu.

 

High Performance & Scalable Analytics, NO-SQL Big Data Platforms

Credits: 
2
Hours: 
20
Area: 
Big Data Technology
Teachers: 
Academic Year: 
Description: 

Il modulo si propone di familiarizzare lo studente con i sistemi ad alte prestazioni per il trattamento e l'analisi di Big Data. Lo studente acquisirà competenze nell'uso di piattaforme NO-SQL per l'interrogazione e il mining di dataset di grandi dimensioni come alternativa dei sistemi di gestione di basi di dati tradizionali.

Pagine

Abbonamento a RSS - 2016-2017

Partners