2024-2025

Podda Marco

Marco Podda è ricercatore (RTD-A) al Dipartimento di Informatica dell’Università di Pisa, dove è anche membro del Computational Intelligence & Machine Learning (CIML) group. Ha ottenuto il dottorato in Informatica presso l’Università di Pisa nel 2021. Si occupa di intelligenza artificiale, apprendimento automatico, reti neurali, deep learning e modelli generativi che operano su dati strutturati, come ad esempio sequenze e grafi. La sua ricerca viene applicata specialmente in ambito biomedico.

Italiano

Deep Learning-Based Artificial Intelligence

Credits: 
3
Hours: 
36
Area: 
Big Data Mining
Academic Year: 
Description: 

The module presents the methodological aspects, technologies and systems for designing predictive systems of Artificial Intelligence through machine learning and deep neural networks. The emphasis is placed on the analysis of application problems using examples and case studies, with practical exercises.

Prerequisites: Python & Data Mining & Machine Learning

Data-Driven Innovation & Data Storytelling

Credits: 
1
Hours: 
12
Area: 
Big Data for Business
Academic Year: 
Description: 

Building on innovation management literature, this course aims to provide a broad and updated understanding of the multi-level key issues regarding the firms’ data driven innovation process. More specifically, the course aims to present how big data could drive companies’ innovation processes. After a preliminary discussion of the key aspects that characterize companies’ innovation processes, emphasis will be placed on practical tools such as business model canvas.

Data Visualization & Visual Analytics

Credits: 
3
Hours: 
30
Area: 
Big Data Story Telling
Academic Year: 
Description: 

The Data Visualization and Visual Analytics course provides a comprehensive introduction to produce effective and efficient visualization and storytelling through data visualization. During the course, the students will explore the basics of visual encoding, data visualization mapping through encoding with visual variables, and visual analytics techniques.

Giulio Ferrigno

Giulio Ferrigno è Ricercatore (RTD-B) presso la Scuola Superiore Sant'Anna di Pisa. Ha svolto diversi periodi di ricerca presso prestigiose università come l'Università di Cambridge, l'Università di Tilburg e l'Università di Umea. I suoi principali temi di ricerca riguardano big data, Industria 4.0 nel management d’impresa. I suoi lavori sono stati pubblicati su autorevoli riviste internazionali tra cui Small Business

Italiano

Chiara Boldrini

Chiara Boldrini è Prima Ricercatrice presso l'IIT-CNR e responsabile del laboratorio di AI & Data Science dell'unità di ricerca Ubiquitous Internet. I suoi interessi di ricerca includono l'AI decentralizzata centrata sull'uomo, l'apprendimento causale nei sistemi pervasivi, i modelli comportamentali/cognitivi umani per l'analisi e la progettazione di reti sociali online/Metaverso.

Italiano

Laboratory Of Big Data And Artificial Intelligence For Society

Credits: 
4
Hours: 
48
Area: 
Big Data Technology
Description: 

In this module groups of students will be guided to design and develop an entire project in Big Data and AI: from data collection to the final delivery. The students will employ in the project methods, techniques and tools studied in the other modules. The duration of this module, differently from the others, will span across several months until the end of the lectures when the results of the project will be presented in front of a committee.

Internship

Credits: 
18
Hours: 
475
Academic Year: 
Description: 

The master requires an internship to be carried out at one of the partners (companies or institutions) or on the current company a student is working on, on the basis of a well defined project work and under the supervision of a team of tutors composed of instructors and company experts. The internship might require in presence work at the partners' offices or hybrid solutions with smart working.

Statistical Methods for Data Science

Credits: 
2
Hours: 
24
Area: 
Big Data Mining
Teachers: 
Academic Year: 
Description: 

The course introduces the student to the main concepts of statistical analysis, the methods used and the software implementations to carry out a quantitative and rigorous study of a dataset. After introducing the basic tools of descriptive statistics, the course focuses on probabilistic statistics and its use for data modelling, estimation methods through an inferential approach and statistical hypothesis testing.

Pagine

Abbonamento a RSS - 2024-2025

Partners